
Application Deployment using Catallactic Grid Middleware
Liviu Joita, Omer F. Rana

School of Computer Science and the
Welsh eScience Centre, Cardiff

University
Queen’s Buildings, 5 The Parade,

Roath, Cardiff, CF24 3AA, UK
Phone: +44 (0)29 2087 4812

{l.joita, o.f.rana}
@cs.cardiff.ac.uk

Pablo Chacín, Isaac Chao,
Felix Freitag, Leandro Navarro
Computer Architecture Department,

Technical University of Catalonia
Jordi Girona 1-3, Campus Nord D6

Barcelona 08035, SPAIN
Phone: +34 (93)401-1055

{pchacin,ichao,felix,leandro}
@ac.upc.edu

Oscar Ardaiz
Department of Mathematics and
Informatics, Public University of

Navarra
Campus de Arrosadia, Pamplona

31006, SPAIN
Phone: +34 (948)168076

oscar.ardaiz@unavarra.es

ABSTRACT
In this paper we describe an application deployment using a
Catallactic Grid-enabled middleware, which is based on the
Catallaxy “free market” self-organisation approach described by
von Hayek [7], who understood the market as a decentralised
coordination mechanism opposite to a centralised command
economy. The implementation makes use of Globus Toolkit,
JXTA and WSRF. The paper envisages the resource virtualization
in the WSRF context as the main driver for a proper connection
middleware-base platform (on the broad scenario of grid
applications).

Category and Subject Descriptors:
C.2.4 [Computer Systems Organization] Distributed Systems

General terms:
Design, Experimentation

Keywords:
Middleware, Grid, Economic-based Allocation

1. INTRODUCTION

There has been significant interest in utilising an economic
paradigm for exchanging Grid resource and services [3]. A key
motivation behind this approach is the capability to schedule
access to services based on a market mechanism (such as
auctions), thereby allowing a more fair and efficient approach to
share resources in high demand. Most existing approaches rely on
the existence of a centralised broker that coordinates resource
access, and is generally implemented over existing Grid
middleware. We propose an alternative approach, based on the
Catallaxy mechanism proposed by von Hayek [7], which does not
need to support such centralised brokers. Catallaxy makes use of a
“free market” self-organisation approach, which enables prices
within the market to be adjusted based on particular demands
being placed on particular scarce services.

A key issue is to utilize this approach as the basis for realizing
resource allocation in Application Layer Networks (ALNs). The
term ALN integrates different overlay networks, such as Grid and
Peer-2-Peer (P2P) systems, as virtual application-based
interconnection topologies that may be implemented over physical
topologies of the Internet. We use the term “agent” to refer to an
autonomous service provider or user, having the capability to
update and modify the services they offer/use, and to determine
how much information about these services should be made
accessible to others.

The Catallaxy approach is a coordination mechanism for systems
consisting of autonomous decentralized agents, and based on
constant negotiation and price signalling between agents [4].
Catallaxy is a way to inform the individual (agent) about the
knowledge that may be contained by other agents, and provides an
exchange of information that leads to the generation of prices
which comply with the value every individual (agent) assigns to
the respective information [2]. Catallaxy therefore leads to the
development of self-organizing individuals (agents) that are
highly dynamic, thereby leading to systems which behave in a
Peer-2-Peer fashion. Such an approach is particularly suited to
“Open Systems”, where detailed knowledge about particular
agents may not be known apriori.

1.1 Catallaxy and Grid markets

The Catallactic “free-market” mechanisms can be applied to
Grids. In Grids two interrelated markets appear: the resource and
service markets. In the Grid resource market, resource providers
sell their computational, storage, bandwidth or tool resources to
resource buyers. The traded good are physical resources which
will be used by buyers to execute their own applications. In the
Grid resource market there are a large number of resource seller
and resource buyer, thus Catallactic “free-market” mechanisms
are needed.

In the Grid service market service providers sell services to
service clients. The traded good in the service market are services
which provide a particular application functionality: a transcoding
service, a query execution service, a molecule docking service.
The service market buyer is interested in a using a particular
application, not in using his own application code. In the Grid
service market there are a large number of service seller and
service buyer, thus Catallactic “free-market” mechanisms are also
needed.

Moreover, service providers can buy resources at the Grid
resource market to provide services in the Grid service market.

"Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

MGC '05, November 28- December 2, 2005 Grenoble, France

Copyright 2005 ACM 1-59593-269-0/05/11... $5.00"

F.e. a transcoding service provider can buy computational
resources in the Grid resource market to execute its transcoding
application for a particular client request. Both markets are
dependant on each other but can operate autonomously applying
catallactic mechanisms as has been shown by simulations in [2].

1.2 Query execution application and Catallaxy

mechanism

The application prototype Cat-COVITE utilises concepts of a
prior application for managing interactions between product
designs, specification engineers and users within the
building/construction industry [10]. This existing application
involves searching through distributed product catalogues
(modelled as a Web Services-enabled database) using a Grid-
based distributed search strategy. The particular approach adopted
in the Cat-COVITE application is employable in a significant
number of other industrial applications which make use of
distributed databases. In this way, the lessons learned from this
application, and integration with the Catallactic middleware may
find use by a very wide community.

1.3 Introduction to WS-Agreement

Web Service Agreement (WS-Agreement) protocol specification
has been developed by the GRAAP Working Group (Grid
Resource Allocation and Agreement Protocol WG) of the
Scheduling and Resource Management (SRM) Area of the Global
Grid Forum (GGF) [8]. WS-Agreement is an XML language
protocol for specifying an agreement between a resource/service
provider and a consumer [13]. It is generally aimed to be a one-
shot interaction, and is not directly intended to support
negotiation. However, it can form a useful basis on which
negotiation between two parties may be conducted. WS-
Agreement is used in Cat-COVITE, and forms the basis for
choosing between multiple service and resource providers. The
service provider acts as the agreement provider, while the service
consumer as the agreement initiator. Section 3.2 will further detail
the concepts and requirements of WS-Agreement in the Cat-
COVITE prototype context.

2. CATALLACTIC MIDDLEWARE

The implementation of Catallaxy in real world Grids requires the
design of Catallactic middleware which offers a set of generic
negotiation mechanisms, allowing specialized strategies and
policies to be dynamically added as plugins. It is intended that the
middleware offers a set of high level abstractions and mechanisms
to locate and manage resources, locate other trading agents,
engage agents in negotiations, and adapt to changing conditions.
Technical issues that need to be evaluated in the context of a
scalable Catallactic middleware are discussed in this section.

2.1 Requirements

Scalability in highly dynamic environments. The Catallactic
middleware should be able to address scenarios with thousands of
nodes in a highly dynamic environment, where nodes enter and
leaves the network frequently. The dynamism in the network
configuration implies that information about the system should be
maintained at a minimum (avoiding global topological
information) and that updates must be easy and efficient.

Handle heterogeneous environments. Scale also implies a high
level of heterogeneity in applications, the underlying platform,
resources, service properties of providers, and availability of
nodes (some will be quasi permanent, other will enter and leave).

Compatibility with different base platforms. Different base
platforms should be supported, thereby leading to the definition of
generic APIs. Some adaptors may be needed to translate this
generic model to the specific model used by each platform. This
translation mechanism could harm the performance of the system
if transformations are complex or frequent.

Component self-organization. The dynamicity of the network
prevents an a priori configuration of the peers or the maintenance
of centralized configuration files. Peer need to discover
continuously the network characteristics and adapt accordingly,
what requires a distribution of some important system functions
like security, resource management, topology management,
among other, which have been traditionally reserved to very
specialized nodes.

Support different implementation architectures. The
middleware may be deployed under different configurations. Each
component should therefore not make any assumptions about a
specific distribution of functionalities. Also, different architecture
models will lead to different interaction patterns between the base
platform, the applications and the Catallactic middleware. Under
some scenarios, the applications will make request for resources
to the base platform, which will in turn, forward it to the
Catallactic middleware (probably, using a component specifically
modified to interact with it). In other scenarios, the application
will make requests directly to the Catallactic middleware
(probably, using a component specifically modified to interact
with it) which will interact with the base platform to fulfil it.

2.2 Concepts and design guidelines

A P2P approach has been adopted, leading to the following
properties: Decentralization, there is neither single or centralized
coordination nor administration point. Symmetric interaction
between peers, all peers are simultaneously clients and servers
both requesting and providing services. Non-deterministic
topology, At any moment in time, the overall topology of a P2P
network is completely unpredictable. The set of nodes that makes
up the network may vary constantly. Dynamic and virtual
allocation of communication paths, due to communication paths
between peers are created dynamically based on various factors,
like network conjunction or intermediate peers’ state.

To achieve these objectives, economic agents are decoupled from
the underlying ALN. Due to the potential variability of the ALN’s
topology, the middleware needs to implement different algorithms
to adapt to different scenarios (for example, adaptation to sudden
changes in the network or disruptions). Therefore, agents should
not need to be aware of the overlay topology or make any
assumption about its communication mechanisms. However,
isolating the economic agents from the agent discovery process
should preclude the integration of economic information (for
example, success ratio of negotiations with other agents) into the
adaptation mechanisms used by the middleware.

Many of the APIs for the different Catallactic middleware layers
will handle information that depends on the specific application
domain and base platform used for implementation. For example,

the resource discovery will return a list of resource descriptions,
which depends on the kind of resources used by application:
processors for a Grid, bandwidth for a Content Distribution
Network (CDN) etc. An XML schema is therefore supported and
can be extended or specialized to each specific implementation.

2.3 Architecture

A layered architecture provides a clear separation of concerns
between the layers. This facilitates the construction of a more
adaptable system, as the upper layers can be progressively
specialized (by means of pluggable rules and strategies) into
specific application domains. The following 5 layers are
supported:

Application Layer: is given by the domain specific end user
applications like collaboration tools, problem solving
environments, and many others. Applications rely on the base
platform for functions like communication and platform level
resource management. However, applications can have
application level resources, like a virtual meeting room in a
collaboration tool or a matrix resolution algorithm in a scientific
environment. The interaction model between the application layer
and the Catallactic middleware is application and middleware
dependent. Application can interact directly with the Catallactic
middleware (becoming Catallactic enabled applications) to
manage their resources or they can interact transparently by means
of the base platform they are built on.

Economics Algorithms Layer: Implements economic algorithms
for resource allocation. These algorithms should be domain and
platform independent. This layer includes a set of interacting
agent services that play the roles of Sellers and Buyers in service
and resource markets. Also, in this layer are extensions and
specializations of the functionalities provided by the underlying
framework, to adapt them to the specific ALN and the resource
allocation polices in place.

Economics Framework Layer: offers the primitives that support
the implementation of Catallactic algorithms, such as finding
peers agents to negotiate, starting negotiation, making a bid, etc. It
is dependent on the agent platform being used, but should be
independent of the application domain and the base platform. This
layer is structured as a set of basic entities that model the
interaction of trading agents in a market to exchange goods. These
abstract entities are the building blocks of the Catallactic
algorithms.

Peer Agent Layer: Platform that hosts the Catallactic agents
offering a generic P2P application model with abstractions for the
discovery and communication mechanism, and a generic interface
with the underlying platform. This layer covers the basic functions
that will be used by all implementations; it is responsible for
interfacing with the underlying platform and complementing it
when necessary.

Base Platform Layer: Supports applications and Catallactic
middleware. It is (potentially) domain specific. The model of
interaction with the Catallactic middleware depends on the
architecture of the base platform, but in general will require the
implementation of a connector, which routes the request for
resources to the corresponding economic agents. In some cases,
this might even require the re-implementation of some core
platform components, like the GRAMs (Globus Resource
Allocation Managers) in Globus [6].

3. CAT-COVITE APPLICATION –

REQUIREMENTS AND CONCEPTS FOR

CATALLAXY

In the original COVITE prototype [10], suppliers and purchasers
collaborate to procure supplies for a particular construction
project by using the COVITE application. These projects are
usually unique, very complex and involve many participants from
a number of organizations acting collaboratively. These
participants work concurrently, thus requiring real time
collaboration between geographically remote participants. Each
consortium is in effect a virtual organization (VO). The
application permits to search across a large number of supplier
databases to retrieve products matching a criteria set by the
purchasers or contractors. The application enables a search to be
conducted, making use of the cluster of machines in a Grid
network to retrieve the matching products.

The COVITE prototype application is divided into two functional
services: Security Service and Multiple Database Search Service
(MDSS). The Grid enabled MDSS enables searching across a
large number of Supplier Databases (SD) using a Master Grid
Service (MGS) instance via a cluster of machines in a Grid
network. In this instance, the query is defined according to a data
model that is specific to a given application domain. Arbitrary text
queries (as in the Google.com search engine, for instance) are not
allowed.

The COVITE application enables these VOs to plan, schedule,
coordinate, and share components between designs and from
different suppliers. The ability of a free-market economy to
adjudicate and satisfy the needs of VOs, in terms of services and
resources, represent an important feature of the Catallaxy
mechanism. Such VOs could require large amount of resources
which can be obtained from computing systems connected over
simple communication infrastructure such as Internet. There are
also possibilities for these VOs to try maximizing their own
utilities on the market.

3.1 Cat-COVITE and the Catallactic Grid

markets

Different components of the COVITE application can be mapped
to actors in Catallactic Grid markets. The resulting Cat-COVITE
application will permit application client to access larger sets of
service and resource in a more cost-efficient manner. Figure 1
shows the Cat-COVITE components and related Catallactic agents
as buyers and seller in the Grid service market and the Grid
resource market. The Cat-COVITE application is composed of
three main components, the Master Grid Service, (a type of
Complex Service), the Query Job Execution Service, (a type of
Basic Service), and query execution resources (computational
resources).

The MGS Complex Service is the buyer entity in the service
market, and the Query Job Basic Service is the seller entity on the
service market.

A MGS Complex Service includes the following activities:

• Translates a request to a Basic Service - query service.

• Starts parallel negotiation with a number of agents
representing Query Job Execution Services (Basic Services).

Client

Resource

Agent1

Resource

Agent2

Resource

Agent3

LRM1

Resource1

LRM2

Resource2

LRM3

Resource3

LRM4

Resource4

LRM5

Resource5

Input

Search

Criteria

WS-Agreement

message

Service Market
Resource Market

Negotiation

messages

Pass the Query Job

Negotiation

messages

Query Job

Service

BS Agent1

BS Agent2

BS Agent3

Catallactic

Access

Point

Complex

Service

Agent

Cat-COVITE

(MGS)

Query

Query Job

Service

Query Job

Service

Figure 1 – Cat-COVITE markets and Catallactic Agents

• Sends a query to a list of Query Job Execution Services
(Basic Services).

The Query Job Execution Basic Service involves query execution
on a particular database and consists of:

• Query Job Execution Environment (offers the deployment of
“slaves“, which are able to execute the query).

• Translation of query to resource requirements.

Within the Cat-COVITE application, the Query Job Execution
Basic Service needs to support response time and the quality and
quantity of the search. With this goal the Query Job Execution
Basic Service buys resources in the resource market. Resource
seller entities are able to provide a set of resources via the Local
Resource Manager (LRM). The Resource Agents act on behalf of
these LRMs, which hide the physical resources behind them.

The Query Job Execution Basic Service is the buyer entity in the
resource market, and the Resource Local Managers are the seller
entity on the resource market. The main functionalities of Basic
Service agent at the resource market are:

• Co-allocation of resources (resource bundles) by parallel
negotiation with different resource providers (local resource
manager entities).

• Informing the Basic Service about the outcome of the
resource negotiation.

3.2 WS-Agreement – concepts and

requirements in Cat-COVITE application

An agreement consists of several parts, according with the WS-
Agreement draft [13]: the section of the agreement name, which is
optional; the agreement context includes the parties to an
agreement, reference to the service(s) provided in support of the
agreement, and the lifetime of the agreement; the agreement
terms, which describe the agreement itself, can contain: the
service description terms, which provide information needed to

instantiate or otherwise identify a service to which this agreement
pertains. And the guarantee terms, which specify the service
levels that the parties are agreeing to.

The example scenario in terms of the Cat-COVITE application
proposed for the prototype interacting with the middleware it is
as: “I (MGS) need to run a query search job. I (MGS) send an
Agreement Offer (AO), based on the Agreement Template (AT)
downloaded from the Catallactic Access Point (CAP), to the CAP
to finding a query job service. The Complex Service Agent, acting
on behalf of the Complex Service (MGS) chosen by the CAP,
negotiates with the Basic Service Agents (in the CATNETS
environment) for query services to fulfill the job”. The agreement
template (AT) specifies the service description elements that are
allowed by the factory which advertises it. We created an
agreement template specific for Cat-COVITE application. The
agreement offer (AO) is initiated by the agreement initiator (the
MGS). The agreement acceptance is the same as the agreement
offer if the agreement provider accepts the conditions of the offer.
If the agreement provider doesn’t accept the offer, the agreement
initiator has to send another agreement offer. The agreement offer
compliant with the Cat-COVITE agreement template looks like:

<?xml version="1.0" encoding="UTF-8"?>
<AgreementOfferLite>
 <Name>QueryServiceTemplateLite</Name>
 <Context>
 <AgreementInitiator>
 <Name>Your Name</Name>
 </AgreementInitiator>
 </Context>
 <Terms>
 <Executable> SELECT IDProduct, ManufacturerName, Price
FROM Product ORDER BY Price DESC
 </Executable>
 <PayForService>100</PayForService>
 </Terms>
</AgreementOfferLite>

C lie n t Q u e ry B u ild e r

M a s te rG rid S e rv ic e

Q u e ryS e rv ic e F a c to ry

(G T 4 /J a v aW S)
C o m p le x S e rv ic e

A g e n t

App lica tion

CATNETS M idd lew are

R e s o u rc e

(G T 4/J a v aW S)

B a s ic S e rv ic e

A g e n t

R e s o u rc e A g e n tR e s o u rc e A g e n t

Base P la tfo rm

Q u e ryS e rv ic e In s ta n c e

(G T 4/J a v aW S)

1

2

3

4

5

6

7

9

8

1 0

DB

C a ta lla c tic

A c c e s s P o in t

Figure 2 – Integration of Catallactic Middleware and Cat-COVITE Grid Application

4. PROTOTYPE IMPLEMENTATION

4.1 Middleware Implementation

The middleware is implemented as a set of simple, specialized
agents using DIETs light-weighted agents platform [5].
Framework agents support the basic functions needed to
implement economic algorithms, like access to markets,
negotiations, traded goods, trading agents, etc. Peer Agent Layer
agents implement the low level functionalities to support system
execution: overlay network, object discovery, communications. A
detailed description of middleware implementation is found in [1].

The Overlay Network, Object Discovery and Communication
functions are implemented using JXTA Peer Resolver Protocol in
a network of Rendezvous Peers that use a DHT to maintain and
route messages among nodes [12]. The management of local
resources, in this case services offered by the service providers, is
based on the WSRF framework [14] offered by GT4.

Searches for grid services are propagated by decentralized
mechanism implemented using JXTA Peer Resolver Protocol,
allowing for complex multi-attribute queries. Remote nodes
previously registered as resolvers for the appropriate type of query
will use the GT4’s Index Service to effectively resolve the query
against the specific search attributes. In a first implementation this
mechanism allows for basic service search, and will need to be
further extended and tuned for performance, especially concerning
the query algorithms on top of the JXTA overlay network.

4.2 Integrating Cat-COVITE with Catallactic

Middleware

Here we describe how the application and the middleware can be
integrated. Figure 2 depicts a high level view of the architecture,
identifying the placement of logical components along the three

layers: the application layer, the Catallactic middleware layer and
the base platform layer.

At the application layer, the application must provide an interface
to the middleware which must issue the requests for services to
the middleware and use the references to service instances
provided by the middleware to execute such services.

At the middleware layer, a set of agents provide the capabilities to
negotiate for services and the resources needed to execute them.
The Complex Service agent acting on behalf of the application
initiates the negotiation. Basic Service and Resource agents
manage the negotiation for services and resources, respectively.
Also, a Service Factory is provided to instantiate the service on
the execution environment selected during the negotiation
process.

Finally, at the Base Platform layer, a Resource is created to
manage the allocation of resources to the service. This resource
represents the “state” of the service from the perspective of the
middleware (notice, this doesn’t mean the service is stateful from
the perspective of the application).

The flow of information among the logical components can be
summarized as follows: a Client issues a request to the application
(1), which builds a query and requests the execution of query to
the Master Grid Service, MGS (2). The MGS contacts a
Catallactic Access Point asking for a WS-Agreement template for
such a service. The MGS fills in the template and sends back an
Agreement Offer (3).

The Complex Service Agent initiates catallactic mechanisms to
find appropriate Basic Services and Resources. The Complex
Service Agent uses discovery mechanisms implemented in the
middleware Peer Agent Layer to locate Basic Service Agents
providing Query Service. When a number of Basic Service Agents
are discovered, it starts negotiations with one of them (4). In turn
such Basic Service Agent must discover and negotiate with a

Resource Agent for query execution resources in the resource
market (5). Negotiations are implemented by the Economic
Framework Layer, where different protocols can be used
depending on the agent's strategy.

When an agreement with a Basic Service Agent is reached, the
Resource Agent instantiate a Resource to keep track of the
allocated resources and returns to the Basic Service Agent a
handle for this resource (6). Consequently Basic Service Agents
use the Query Service Factory to instantiate the Query Service on
the selected GT4 container (7).

Basic Service Agent returns to the Complex Service Agent the
reference to the newly instantiated Query Service and the related
resource(s) (8). The reference to the Query Service is returned to
the MSG (9), which uses it to invoke the service, passing the
query to be executed (10).

4.3 Physical Deployment on GT4 containers

The logical architecture depicted in the previous section can be
implemented in different ways depending on the base platform
used. We describe a specific implementation on a GT4 [9] based
platform, and based on the following assumptions. First, the
services are previously deployed on a set of GT4 containers.
Second, the only “resource” considered in the negotiation are the
“rights” to execute the service on a specific container. Finally, the
service can be instantiated on a container using a generic factory.

The Application resides in a host (or series of hosts) where also
resides the Master Grid Service (interface with the middleware)
and the Complex Service Agent, which represents the application
in the negotiation process. On each Grid Container (GT4) where
the Query Job Execution Service is deployed, resides the
corresponding Basic Service Agent, which negotiates with the
Complex Service Agent for access to the Query Job Execution
Service. In this container also resides the Resource Agent, which
negotiates with the Basic Service Agent for the rights to execute
the Query Job Execution Service in this container. Finally, a
Resource is created as result of the negotiation process, which
represents the “rights” to execute the service in this container.

5. CONCLUSIONS

The Catallactic middleware – based on the concept described by
von Hayek has been presented, along with an application that
makes use of this middleware. An implementation has also been
achieved using GT, JXTA and WSRF.

We observed that the negotiation protocol will need to go beyond
the current WS-Agreement specification to handle the
complexities of the bargaining process. Also, WSRF
specifications are still too general and do not offer a clear
approach managing virtual resources.

We envisage the growing tendencies to service oriented
architectures and resource virtualization as the main drivers for an
increasing integration of the resource negotiation mechanisms
offered by middleware with the base platforms on the broad
scenario of grid applications.

Next steps include the development of measurement components
to support the middleware, to assess the performance of the
developed application. Also, we envision proving this architecture

in other application models to evaluate qualitatively the
architecture under diverse scenarios.

6. ACKNOWLEDGMENTS

This work was supported in part by the European Union under
Contract CATNETS EU IST-FP6-003769, and the Spanish
Government under Contract TIC2002-04258-C03-01.

7. REFERENCES

[1] Ardaiz O., Chacín P., Chao I., Freitag F., Navarro L. An
Architecture for Incorporating Decentralized Economic
Models in Application Layer Networks. Smart Grids
Technologies Workshop, Utrecht, Holland, 2005.

[2] Ardaiz O., Artigas P., Eymann T., Freitag F., Navarro L.,
Reinicke M. The Catallaxy Approach for Decentralized
Economic-based Allocation in Grid Resource and Service
Markets. Special Issue on Agent-based Grid Computing,
International Journal of Applied Intelligence, accepted.

[3] Buyya R., Abramson D., Giddy J., and Stockinger H.
Economic Models for Resource Management and Scheduling
in Grid Computing. The Journal of Concurrency and
Computation: Practice and Experience (CCPE), Wiley Press,
May 2002

[4] CATNET Project deliverables. D3: Catallaxy Evaluation
Report. March 2003. Available at:
http://research.ac.upc.es/catnet/pubs/D3.pdf

[5] Diet Agents, http://diet-agents.sourceforge.net/, Oct. 2005.

[6] Foster I., Kesselman C., Lee C., Lindell R., Nahrstedt K.,
Roy A. A Distributed Resource Management Architecture
that Supports Advance Reservations and Co-Allocation. Intl
Workshop on Quality of Service, 1999.

[7] Hayek F. A., Bartley W., Klein P., Caldwell B., The
collected works of F. A. Hayek. University of Chicago Press,
1989.

[8] Global Grid Forum (2005), http://www.ggf.org/

[9] Globus Toolkit version 4.0, http://www.globus.org

[10] Joita L., Pahwa J. S., Burnap P., Gray A., Rana O., and Miles
J. Supporting Collaborative Virtual Organisations in the
Construction Industry via the Grid. Proceedings of the UK e-
Science All Hands Meeting 2004, 31st Aug.-3rd Sept. 2004
Nottingham, UK.

 [11] Joseph J:, Ernest M., Fellenstein C. Evolution of grid
computing architecture and grid adoption models. IBM
Systems Journal, Volume 43 , Issue 4 (January 2004)

[12] Traversat, Abdelaziz, and Pouyoul, Project JXTA: Loosely-
Consistent DHT Rendezvous Walker. Sun Microsystems,
Inc., http://www.jxta.org/project/www/docs/jxtadht.

[13] Web Services Agreement Specification (WS-Agreement), 28
June 2005
https://forge.gridforum.org/docman2/ViewCategory.php?gro
up_id=71&category_id=659

[14] WS-Resource Framework, http://www.globus.org/wsrf/

