
Is the Schedule Clause Really Necessary

in OpenMP?

Eduard Ayguadé1, Bob Blainey2, Alejandro Duran1, Jesús Labarta1,
Francisco Mart́ınez1, Xavier Martorell1, and Raúl Silvera2

1 CEPBA-IBM Research Institute
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona, 1-3, Barcelona, Spain

{eduard,aduran,jesus,fmartin,xavim}@ac.upc.es
2 IBM Toronto Lab, 8200 Warden Ave

Markham, ON, L6G 1C7, Canada
{blainey,rauls}@ca.ibm.com

Abstract. Choosing the appropriate assignment of loop iterations to
threads is one of the most important decisions that need to be taken
when parallelizing Loops, the main source of parallelism in numerical ap-
plications. This is not an easy task, even for expert programmers, and it
can potentially take a large amount of time. OpenMP offers the schedule
clause, with a set of predefined iteration scheduling strategies, to specify
how (and when) this assignment of iterations to threads is done. In some
cases, the best schedule depends on architectural characteristics of the
target architecture, data input, ... making the code less portable. Even
worse, the best schedule can change along execution time depending on
dynamic changes in the behavior of the loop or changes in the resources
available in the system. Also, for certain types of imbalanced loops, the
schedulers already proposed in the literature are not able to extract the
maximum parallelism because they do not appropriately trade–off load
balancing and data locality. This paper proposes a new scheduling strat-
egy, that derives at run time the best scheduling policy for each parallel
loop in the program, based on information gathered at runtime by the
library itself.

1 Introduction

Parallel loops are the most important source of parallelism in numerical ap-
plications. OpenMP, the standard shared–memory programming model, allows
the exploitation of loop–level parallelism thorough the DO work–sharing and
PARALLEL DO constructs. Iterations are the work units that are distributed among
threads as indicated in the SCHEDULE clause: STATIC, DYNAMIC and GUIDED (all
of them with or without the specification of a chunk size). While in a STATIC
schedule the assignment of iterations to threads is defined before the computa-
tion in the loop starts, both DYNAMIC and GUIDED do the assignment dynamically
as the work is being executed. In DYNAMIC threads get uniform chunks while in

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 147–159, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

148 Eduard Ayguadé et al.

GUIDED chunks are progressively reduced in size in order to reduce scheduling
overheads at the beginning of the loop and Cavour load balancing at the end.

Deciding the appropriate scheduling of iterations to threads may not be an
easy task for the programmer, specially when it depends on dynamic issues, such
as input data, or when memory behavior is highly dependent on the schedule
applied. Load unbalancing or high cache miss ratios, respectively, are usually
symptoms of inappropriate iteration assignments. In OpenMP, the program-
mer can play with the predefined schedules mentioned above or embed its own
scheduling strategy in the application code if none of them is appropriate. The
chunk size (or number of contiguous iterations assigned to a thread) is a param-
eter that needs to be appropriately set in order to avoid non–friendly memory
assignments of iterations and/or excessive run-time overheads in the process of
getting work. Even worse, the decisions may depend on parameters of the tar-
get architecture (going against performance portability, one of the key issues in
OpenMP).

The standard offers the possibility of specifying that the loop needs to be
serialized if a certain condition is met (IF clause in OpenMP). Some OpenMP
runtime systems can also decide to serialize the execution if certain conditions
(e.g. loop bounds, number of threads, ...) are met.

In order to decide a schedule strategy, some simple rules of thumb are usually
applied: STATIC for those loops with good balance among iterations; unbalanced
loops should use an interleaved schedule (STATIC with chunk) or some sort of
dynamic schedule (DYNAMIC or GUIDED). However, the use of dynamic schedules
usually incurs high scheduling overheads and its non-predictive behavior tends
to degrade data locality (non–reuse of data across loops or multiples instances
of the same loop). Although these rules work for a large number of simple cases,
they are far from complete and can lead to poor decisions. Other schedules need
to be built by the user, embedding code and data structures to implement them.

In this paper we will present a proposal to remove such burden from the pro-
grammer by letting the runtime decide which is the most appropriate schedule
for a given loop. In the next section we motivate the work by using a simple
unbalanced and applying different schedules. In section 3 we present the generic
framework of our work. In section 4 we describe our current prototype implemen-
tation. In section 5 we show the results obtained with some benchmarks. Finally
in section ?? concludes the paper and shows future directions of research.

2 Motivation and Related Work

In order to motivate the proposal presented in this paper, we will consider a
synthetic loop in which the cost of each iteration is cost(i) = k/i, k being a
parameter that depends on the number of iterations of the loop. This distributes
almost all the weight of the loop to the first iterations (the first 1% of the iteration
space accounts for 50% of the cost of the loop). During the execution, each thread
accesses a matrix indexed with its thread identifier. Therefore, the loop only has

Is the Schedule Clause Really Necessary in OpenMP? 149

temporal locality. The loop has been executed 500 times on a 4-way IBM Power4
system. Figure 1 shows the results obtained for different schedules.

In this loop, using a STATIC schedule leads to a highly unbalanced execution,
with a speedup of 1.64 with respect to the execution with one thread. Although
the use of a STATIC schedule with a chunk size of one increases the speedup to
1.97, it still does not achieve good balance. For example, if k = 10000, the work of
the first thread is 1.6 times the work of the fourth. Therefore, this is an example
in which it seems appropriate to use either a DYNAMIC or GUIDED schedule. Using
a DYNAMIC schedule we get a speedup of 1.82 due to the high scheduling overheads
and degradation of temporal locality. A GUIDED schedule, which usually tends to
reduce these scheduling overheads, is decreasing the speedup to 1.63; this is due
to the fact that some threads get excessively large chunks at the beginning that
are not well balanced with the remaining ones.

Probably, the best schedule would be ad–hoc trying to reduce scheduling
overheads, optimize load balancing, avoid false sharing or a combination of these
issues that compensate them. However, in other cases it may be even impossible
for the the programmer to calculate this ”ideal schedule” because it depends on
variables only available at runtime (architecture, input data, interaction between
loops or processes, . . .).

Other schedules, similar in nature to GUIDED, have been proposed in the
literature, such as trapezoid scheduling [1], factoring [2], and tapering [3]. These
schedules are variations of the previous ones and are tailored for certain load
unbalance patterns. Some other schedules try to take in account the geometric
form of the iteration space. For example folding is a variation of STATIC in
which iterations i and N − i are assigned to the same thread, N being the total
number of iterations. For the previous synthetic example, this schedule is unable
to improve the behavior achieving a speedup of 1.77. A study of the most suited
schedule for different loops, grouped by their iteration execution time variance
is presented in [4].

Speedup

0 1 2 3 4

Static

Static,1

Dynamic

Guided

Folding

Affinity

Adjust

Fig. 1. Speedup for different schedules on a 4-way IBM Power4

150 Eduard Ayguadé et al.

Other proposals try to achieve load balancing by applying work stealing.
They usually assign iterations to threads in a STATIC–like manner; in Affinity
Scheduling (AS) [5] threads steal chunks of work from other processors as soon
as they finish with the initially assigned work. This work stealing adds a dynamic
part to the work assignment that does not Cavour memory behavior. Affinity
Scheduling is available in the IBM OpenMP runtime system as a non–standard
feature that can be specified in the OMP RUNTIME environment variable. In our
synthetic example, affinity scheduling achieves the highest speedup of all the
available schedules (2.07). Dynamically partitioned affinity scheduling (DPAS)
[6] learns from work stealing in order to derive a new STATIC-like schedule, to
be used in subsequent instances of the loop, in which each thread has a different
chunk size. Other proposals such as Feedback Guided Dynamic Schedule (FGDS)
[7] and Feedback Guided Load Balancing [8] avoid the dynamic part by simply
measuring the amount of unbalance (without applying work stealing) and derives
a similar STATIC schedule. In [9] a different approach is used where a processor
is reserved to compute partial schedules based on the load of each processor that
are placed on the processors work queues.

The main objective of this paper is to advance one step further in the use
of dynamically derived schedules and show how they can optimize the behavior
of real applications. We propose a general framework oriented towards having
a self–tuned OpenMP runtime system and show an implementation on a real
commercial system. The runtime is able to characterize the execution of a loop
and learn from past executions in the same run in order to gradually enhance
the assignment of iterations to threads. The objective is to relieve the user from
the task of deciding the best schedule for each loop and ideally lead to better
performance. For instance, in the same synthetic example described above, our
proposed framework achieves an speedup of 3.53. The scheduling is achieved in a
completely transparent way with no additional specification from the program-
mer in the source code.

3 Dynamic Derivation of Loop Schedules

In order to decide the most suited schedule, the runtime needs to collect infor-
mation that characterizes the behavior of the loop. Although the compiler could
provide static information derived from the analysis of the source code (or even
could be provided by the user as hints), such as the initial schedule for the loop
or the identifiers of other loops with similar memory access and/or workload
patterns, most of the information can only be gathered at runtime. Our main
goal is to show that this information gathering, loop characterization and op-
timization can be done at runtime with minimal (or no) information from the
user and/or compiler and with reasonable (or even negligible) overhead.

At runtime, the information that can be dynamically observed and collected
includes: size and bounds of the iteration space, variation in the cost of the iter-
ations, memory access patterns and conflicts in the access to memory containers
(cache lines or pages), etc. In the process of observing these metrics, granularity

Is the Schedule Clause Really Necessary in OpenMP? 151

is an important issue to consider: Overall per–thread execution time versus exe-
cution time for iteration (or groups of iterations), overall per–thread cache miss
ratio (or page fault ratio) versus detailed correspondence between cache misses
(page faults) and loop iterations, . . . The accuracy level (granularity) may not
be constant during the execution of the program and vary according to the char-
acterization process itself. The first time a loop is executed, or after detecting
a high perturbation in its current characterization, the runtime could switch to
fine–grain measurement status. Once the runtime detects a stable characteriza-
tion, it could switch to a coarser–grain mode of operation, in order to minimize
unnecessary overheads.

When no information is available for a loop (e.g it is the first time the loop is
executed), the runtime could start with a predefined schedule (or even the one
suggested by the programmer) and try to characterize the loop doing fine-grain
measurements. Another possibility could be to adopt the characterization for a
another loop (for which a characterization has been done) and make fine-grain
measurements. This characterization reuse may be important in order to reduce
the time required to reach a stable characterization state. Reuse hints could
also be provided by the programmer or the compiler (e.g. providing information
about affine loops). It could even be possible that the runtime discovers affinity
relationships between loops (i.e. loops whose characterization is the same or
changes in the same way) that are executed inside an iterative sequential loop.

Our belief is that the use of work-stealing strategies during the character-
ization process should be avoided in order to prevent perturbations with the
characterization process itself. For example, work stealing adds a dynamic part
to the assignment of iterations that may worsen memory locality and increase
memory latencies both for the stealing and stolen threads. However, in some
cases this extra overhead may be compensated with load balancing, thus re-
ducing the overall time to reach a (new) efficient schedule for the loop. Loops
that are executed only once could also have a better behavior if work stealing is
applied.

Based on the available characterization, and in order to decide the best suited
assignment of iterations to threads, the runtime should try to:

– Preserve spatial locality, by assigning contiguous chunks of iterations to the
same thread whenever possible. This will optimize the access to memory
containers (cache lines or pages) and reduce the likelihood of false sharing.

– Preserve temporal locality, by reusing the same schedule in subsequent exe-
cution instances of the same loop (or an affine one). This will Cavour data
reuse.

– Balance loops, so that all threads get the same amount of work; this does
not imply the same amount of iterations.

Once the scheduling is decided, the characterization process continues in
order to detect further opportunities for refinement. As mentioned before, and
since this information gathering could have a significant impact on performance,
the runtime should be able to switch to the most appropriate granularity level,
depending on the status of the characterization itself.

152 Eduard Ayguadé et al.

Up to this point, we have not addressed possible interferences between the
schedules applied to different loops. The use of different iteration assignments in
different loops may degrade memory locality and be counter–productive. To this
end, the characterization process could consider sequences of loops and derive
decisions that optimize the behavior of the sequences and not the individual
loops.

4 Current Implementation

In this section, we describe the current prototype for the self–tuning OpenMP
runtime system that has been implemented in the XL IBM Runtime. In the
description we consider both the characterization and the decision processes. In
this prototype implementation, mainly load balancing issues are addressed.

The runtime identifies each parallel loop instance with a tuple {L, IS}. The
first component (L) of this tuple identifies the loop in the program (using the
pointer to the routine generated by the compiler that encapsulates the loop). The
second component (IS) identifies different instances of the same loop (using the
iteration space of the loop: iteration limits). Whenever possible, the information
derived by the runtime for a tuple {Li, ISj} will be re-used to initially charac-
terize other tuples {Li, ISk} that correspond to the same loop. All tuples that
correspond to the same loop Li summarize the past behavior for that loop.

For each tuple {L, IS} the following information is recorded:

– The pointer to the routine that identifies the loop.
– The iteration space description.
– The {L,IS} balancing information.
– The last subchunk information gathered by the runtime for the tuple (See
below).

– The relation of weights between iterations. In the current implementation
only two patterns are handled: constant weight, when all iteration have the
same weight, and unknown. Others patterns could be recognized if their
properties are useful for scheduling.

– The last schedule applied to the tuple.

The balance information is composed of:

– A state that indicates the actual knowledge of the balance of the {loop/iteration
space}.The possible states and their meaning are summarized in table 1.

– The number of consecutive executions that this balance state has been main-
tained.

– The actual definition of balanceness for the tuple, i.e the percent of unbalance
allowed. This definition varies among time. When there is no knowledge
about balance the limit is 10% of imbalance. Later on, as there is more
confidence the limit is increased first to 20% and later to 25%. The increment
of our definition of balance enables to elude minimal perturbations of the
system.

Is the Schedule Clause Really Necessary in OpenMP? 153

Table 1. Possible balance states

State Meaning

Unknown No balance information is known yet.

Unbalanced Runtime found that it is unable to balance the tuple.

Balanced Runtime found a schedule that balanced the tuple.

Highly balanced Runtime feels really confident that the schedule applied

will be balanced.

The transitions of the balance state are shown in figure 2. If no information
is inherited from other states, the first balance information is the Unknown
state. When a balanced execution is done a transition to the Balanced state is
done. After N unsuccessful executions the Unbalanced state is achieved. While
in this state a balanced execution, normally due to a change in behavior, takes
a transition to the Balanced state. While in the Balanced state any imbalanced
execution reverts to the Unknown state. N balanced executions in the Balance
state increases the confidence on the decision and goes to the Highly Balanced
state. An unbalanced execution in this last state reverts to the Balanced state.
Note that when there is confidence in the balance of the loop there have to
be two consecutive unbalanced executions in the last N to revert from Highly
Balanced to Unknown. This gives some tolerance to perturbations while being
able to adapt to changes in the behavior. The actual value for N is 10 times.

When a {loop/iteration space} is executed for the first time a new state is
allocated for it. If it is also the first execution of the loop the state is initialized
to an Unknown balance state and a hypothesis that the iterations weights are
constant is tried. If other iteration spaces were executed for the same loop be-
fore, the initialization is inherited from the most similar iteration space. In other
words, the balance information, the iteration information and a modified ver-
sion of the schedule applied to the other iteration space (adding or subtracting
iterations) are copied.

Unbalanced

Unknown Balanced Highly
Balanced

Unbalanced
execution

Balanced
execution

Balanced
execution

N Unbalanced
executions

Unbalanced
execution

N Balanced
executions

Fig. 2. Balance information transitions

154 Eduard Ayguadé et al.

Every time the loop starts the execution in a given iteration space, the sched-
ule to be used (and its parameters) are decided. This decision is based on the
current state of the tuple. Currently, one of two the following schedules can be
chosen:

– OpenMP STATIC.
– Non–uniform STATIC. This schedule is very similar to the previous one. Each
thread is also assigned a chunk of contiguous iterations that are determined
prior to the loop execution. However, chunks assigned to threads may be of
different size. When the size of each chunk is properly chosen a very good
load balance is achieved. Temporal and spatial localities are achieved as
in the STATIC case because of the assignment of contiguous iterations and
schedule reuse.

The scheduling decision is summarized in table 2. When something is known
about the balance of the loop, either that loop is balanced or that it is un-
balanceable, the last schedule applied is reused. In case the loop is considered
balanced this schedule will be the the one that achieved the balance. In case the
loop is considered unbalanceable the schedule will be the best schedule found
which will be used there on. When nothing is known about the balance of the
loop, either because a proper schedule that balances it has not been found yet or
because it hasn’t reached the threshold to give up, the schedule used is static if
the iterations were found to be constant, otherwise an non-uniform static sched-
ule is used with the assignment of iterations for each thread calculated based on
previous gathered measurements.

Table 2. Schedule decision function

Balance state Iteration cost Schedule

Unknown Constant Static

Unknown Non-constant Non-uniform Static

Other * Reuse previous

The assignment of iterations for each thread when the non-uniform static
schedule is used works as follows. First, the weight each thread should have is
calculated dividing the total time by the number of threads. Afterwards, sub-
chunks are assigned sequentially to the first thread. When the sum of the sub-
chunks is greater that the estimated weight per thread, the last subchunk is
broken assuming all iterations in the subchunk have the same weight, and the
number iterations of the first thread is adjusted in consequence. The remaining
iterations of the last subchunk are left to be assigned to other threads. Next, we
start assigning iterations to the second thread, and so on. If we arrive to the last
thread there are still some iterations left are assigned to the last thread.

Also when going to execute the loop, the granularity of measuring has to
be decided. Two granularities are supported: subchunk (fine granularity) and

Is the Schedule Clause Really Necessary in OpenMP? 155

thread (coarse granularity). When subchunk granularity is used, to avoid ex-
cessive overhead of measuring every single iteration, groups of iterations called
subchunks are measured. The number of these subchunks is variable for each
thread and depends of the number of iterations that have been assigned. When
thread granularity is chosen, the measures are done for the overall iterations
of each thread (so there is only one subchunk per thread). The measures right
now include only execution times. The decision of choosing between the two
granularities is taken based on the balance state of the loop as shown in table 3.

Table 3. Time measures granularity decision function

Balance state Granularity used

Unknown Fine measuring

Other Coarse measuring

After the execution of the loop a new state has to be generated. It is cal-
culated using the actual state and the measures taken from the execution. If
the execution time of each thread does not deviate from the average more than
the actual definition of balance the execution is considered balanced, otherwise
the execution was unbalanced. With this information a transition in the balance
state automaton is done. Also, based on the taken measures, if the mean itera-
tion weight per thread does not deviate from a certain threshold the iterations
are considered to be constant, otherwise iteration weights are calculated from
subchunk information. Finally, current schedule decision are saved as the last
schedule applied. If this schedule also resulted in the best schedule applied so
far it is saved as the best schedule used.

With this runtime environment, loops that would require the use of STATIC,
DYNAMIC, GUIDED or even other schedules not available in OpenMP (such as
folding) can be efficiently executed, as shown in the evaluation section.

5 Evaluation

In order to evaluate the proposed schedule, we have used some programs from
the SPEComp suite [10] (swim, ammp, gafort, apsi, wupwise, and art), class A
NAS OpenMP benchmarks [11] (bt, ft, cg, sp, and mg), and a computational
kernel that calculates the Legendre polynomial. They are OpenMP versions that
make use of the SCHEDULE clause.

When a parallel do loop does not specify an schedule (using the SCHEDULE
clause) it defaults to a special value: RUNTIME. This value means that the actual
schedule to be used can be specified in the environment variable In order to
specify a schedule not specified in the standard, we use OMP RUNTIME. If this
variable is not specified the schedule used is implementation dependent, thought
typically is STATIC. Two different kind of tests have been run: the first run

156 Eduard Ayguadé et al.

bt.A cg.A ft.A sp.A mg.A

s
p
e
e
d
u
p

0

1

2

3

4

5

default adjust

(a) 4 processors

bt.A cg.A ft.A sp.A mg.A

s
p
e
e
d
u
p

0

2

4

6

8

default adjust

(b) 8 processors

bt.A cg.A ft.A sp.A mg.A

s
p

e
e

d
u

p

0

4

8

12

16

default adjust

(c) 16 processors

Fig. 3. Speedups for the NAS benchmarks

with the schedules originally set in the benchmark, and OMP RUNTIME defined as
STATIC. In the second test, we eliminated the SCHEDULE clauses of all parallel
loops and set the OMP RUNTIME environment variable to ADJUST, specifying that
the schedule described in Section 4 should be applied.

The benchmarks were run in a p690 32-way Power4 [12] machine at 1.1
Ghz with 128 Gb of RAM. We used the IBM’s XLF compiler with the -O3
-qipa=noobject -qsmp=omp flags, and the operating system was AIX 5.1 .

Programs bt, ft, cg, sp, mg, swim, apsi, and wupwise use STATIC schedules.
The programs ammp, gafort and art use GUIDED schedules. The Legendre kernel
has two triangular loops that are programmed with a ”folding” schedule embed-
ded in the application code. In mg, is interesting to note that the iteration space
changes from one execution to another.

Figure 3 shows the results for the NAS benchmarks, on the x-axis are the
benchmarks and on the y-axis is the speedup achieved for the default schedule
and for the adjust runtime. It can be seen that the results obtained from both
methods are almost equivalent (the difference is always below 5%). This is due
the NAS benchmarks have loops very balanced with good locality by default
and there is little room for improvement here. The important thing is that our
mechanism is able to decide also a STATIC schedule for this type of loops, that
are quite common, with a negligible overhead in reaching that decision.

Is the Schedule Clause Really Necessary in OpenMP? 157

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

1

2

3

4

default adjust

(a) 4 processors

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

2

4

6

8

default adjust

(b) 8 processors

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

4

8

12

16

default adjust

(c) 16 processors

Fig. 4. Speedups for the SPEComp benchmarks

Figure 4 shows the results for the SPEComp benchmarks. Notice that the
ones that use STATIC schedules achieve the same performance with differences
below 3%. Of the programs that use GUIDED schedules, ammp is really improved
by our method (27% with 4 processors, 22% with 16 processors). The reason for
this is that the non–uniform static schedule derived by the runtime has much
better locality, because iterations are executed contiguously and the schedule
is reused, than the original schedule. The improvement of gafort is negligible
(below 4%). As gafort makes random vector accesses thus we do not obtain the
locality gains seen in ammp. The art benchmark is the worse case our method
can find, as the main code is a loop executed just one time, and we cannot make
use of the knowledge obtained in that first execution. As we see, our method
needs loops that are executed iteratively. To solve this cases a schedule that is
more flexible to imbalanced codes than STATIC should be used the first time
(such as the Affinity schedule), but right now the original code performs a 20%
better that our proposal.

In figure 5 are the results for the Legendre kernel results. In addition to the
default folding schedule and adjust, the best OpenMP schedules found (dynamic,
16 for 4 processors and static, 4 for 8 and 16 processors) are also shown. Note that
one user that decided to use as schedule dynamic,16 after some basic analysis
in a minor configuration would be fooled if later he would run it in a high end

158 Eduard Ayguadé et al.

legendre

s
p
e
e
d
u
p

0

1

2

3

4

5

dynamic,16 static,4 folding adjust

(a) 4 processors

legendre

s
p
e
e
d
u
p

0

2

4

6

8

10

dynamic,16 static,4 folding adjust

(b) 8 processors

legendre

s
p
e
e
d
u
p

0

4

8

12

16

dynamic,16 static,4 folding adjust

(c) 16 processors

Fig. 5. Speedups for the Legendre kernel

production system. In any case, our proposal is able to find a non–uniform static
schedule that performs as well as the ”hardwired” folding schedule (differences
are below 5%) and much better than any OpenMP schedule (from 16% to 41%
better).

Acknowledgments

Authors want to thank Julita Corbalan for her insightful comments. This work
has been supported by the IBM CAS program, the POP European Future
Emerging Technologies project under contract IST-2001-33071 and by the Span-
ish Ministry of Science and Education under contract TIC2001-0995-C02-01.

References

1. T.H. Tzen and L.M. Ni. Trapezoid self-scheduling scheme for parallel computers.
IEEE Trans. on Parallel and Distributed Systems, 4(1):87–98, 1993.

2. E. Schonberg, S.F. Hummel, and L.E. Flynn. Factoring: A practical and robust
method for scheduling parallel loops. Communications of the ACM, 35(8):90–101,
1992.

Is the Schedule Clause Really Necessary in OpenMP? 159

3. S. Lucco. A dynamic scheduling method for irregular parallel programs. In Pro-
ceedings of ACM SIGPLAN’92 Conference on Programming Language Desing and
Implementation, pages 220–211, 1992.

4. Kelvin K. Yule and David J. Lilja. Categorizing parallel loops based on iteration
execution time variances. Technical Report HPPC-94-13, University of Minnesota,
1994.

5. E. P. Markatos and T. J. LeBlanc. Using processor affinity in loop scheduling on
shared-memory multiprocessors. Technical Report TR410, 1992.

6. S. Subramaniam and D.L. Eager. Affinity scheduling of unbalanced workloads. In
SuperComputer’94 Conference Proceedings, 1994.

7. J. Mark Bull. Feedback guided dynamic loop scheduling: Algorithms and experi-
ments. In European Conference on Parallel Processing, pages 377–382, 1998.

8. Francis H. Dang and Lawrence Rauchwerger. Speculative parallelization of par-
tially parallel loops. In Languages, Compilers, and Run-Time Systems for Scalable
Computers, pages 285–299, 2000.

9. Babak Hamidzadeh and David J. Lilja. Self-adjusting scheduling: An on-line opti-
mization technique for locality management and load balancing. In International
Conference on Parallel Processing, pages 39–46, 1994.

10. Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones,
and Bodo Parady. SPEComp: A new benchmark suite for measuring parallel com-
puter performance. Lecture Notes in Computer Science, 2104, 2001.

11. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

12. Steve Behling et al. The POWER4 processor introduction and tuning guide. Tech-
nical Report SG24-7041-00, International Technical Support Organization, Novem-
ber 2001. ISBN 0738423556.

	Introduction
	Motivation and Related Work
	Dynamic Derivation of Loop Schedules
	Current Implementation
	Evaluation

